Новости

22 декабря, 2020 13:06

Как выковать лазер. Изучена роль пластических деформаций в прямой лазерной записи

Источник: Коммерсант
С помощью прямой лазерной записи можно получать оптические микросхемы в объеме стекол и кристаллов, чтобы, например, создать на маленьком кусочке материала сотни микролазеров. Однако физико-химические процессы, лежащие в основе лазерной записи, изучены еще не так системно, чтобы надежно управлять ее режимами. Поэтому российские ученые из РХТУ и ИОФ РАН исследовали, что происходит при воздействии лазерного излучения на один из самых популярных оптических кристаллов — иттрий-алюминиевый гранат, и показали, что ключевую роль в прямой лазерной записи здесь играют пластические деформации. Исследование поддержано Российским научным фондом (РНФ).
Фемтосекундный лазер - с применением подобной установки велась лазерная запись в экспериментах. Источник: MIPT/Flickr, Creative Commons
Визуализация процесса прямой лазерной записи в иттрий-алюминиевом гранате. Источник: S. S. Fedotov et al. / Scientific Reports, 2020
3 / 4
Фемтосекундный лазер - с применением подобной установки велась лазерная запись в экспериментах. Источник: MIPT/Flickr, Creative Commons
Визуализация процесса прямой лазерной записи в иттрий-алюминиевом гранате. Источник: S. S. Fedotov et al. / Scientific Reports, 2020

Если на стекла или кристаллы направить сфокусированное и интенсивное лазерное излучение, то прямо внутри них можно нарисовать разные оптические структуры. Такой метод называют прямой лазерной записью. Часто в нем используют фемтосекундные лазеры, которые генерируют импульсы сверхмалой длительности в 10–13 секунд. Их интенсивность столь высокая, что если перемещать материал вдоль жестко сфокусированного фемтосекундного лазерного луча, то в определенной области внутри него будет изменяться химическая структура и, как следствие, показатель преломления. Так можно сделать оптический волновод — аналог проводов на электрических микросхемах, только по волноводу распространяются не электроны, а оптические сигналы.

Для хорошего волновода нужно, чтобы показатель преломления однородно изменялся по всей его длине — так излучение будет двигаться по нему как по трубе и никуда не «вытекать». Но, чтобы точно управлять прямой лазерной записью, нужно хорошо понимать, какие физико-химические процессы за ней стоят: что именно происходит с материалом, когда его облучают фемтосекундными лазерными импульсами. Однако если причины изменения показателя преломления при записи в стеклах ученым уже понятны, то аналогичные явления в кристаллах изучены гораздо хуже, хотя они и больше подходят для создания оптических волноводов. Поэтому ученые из Российского химико-технологического университета имени Д. И. Менделеева (РХТУ) и Института общей физики имени А. М. Прохорова (ИОФ) РАН изучили процессы прямой лазерной записи в иттрий-алюминиевом гранате — популярном синтетическом кристалле для создания оптических микроструктур. Исследователи выяснили, что ключевую роль в них играют пластические деформации материала, вызванные лазерным излучением.

«Человечество с незапамятных времен использует преимущества пластической деформации, например при ковке металла. Однако в нашем исследовании мы, возможно, впервые описываем пластическую деформацию, инициируемую не на поверхности кристалла, как обычно происходит при механическом давлении на образец, а внутри него»,— прокомментировал Андрей Охримчук, руководитель проекта по гранту РНФ, сотрудник РХТУ и ИОФ РАН, один из авторов работы.

От дислокаций до лазеров

В работе ученые фокусировали лазерный луч внутри материала и постепенно перемещали его, изменяя от эксперимента к эксперименту скорость движения фокуса и энергию лазерного импульса. Затем исследователи смотрели, как от этих действий изменяется показатель преломления кристалла. Оказалось, что он значительно уменьшается в местах пластических деформаций, вызванных лазерным излучением, а интенсивность этого эффекта определяется образованием и скольжением дислокаций — линейных дефектов кристаллической решетки.

Исследователи выделили три варианта пластических деформаций. В первом дислокации скользят свободно в объеме материала, во втором их становится так много, что они мешают перемещению друг друга, а в третьем — концентрация дислокаций оказывается промежуточной и они образуют регулярные микроструктуры в кристалле. Сценарий же пластической деформации и в конечном счете показатель преломления модифицированного лазерным излучением участка граната определяется прежде всего количеством лазерных импульсов, попадающих в одну точку, то есть задается режимом лазерной записи. Таким образом, ученые установили, как, меняя режим лазерной записи в иттрий-алюминиевом гранате, можно управлять структурой создаваемого в его объеме оптического волновода.

Это может быть полезно для создания волноводных микролазеров. Обычный лазер представляет собой сложную систему оптических элементов, сердцем которой служит так называемая активная среда — оптический кристалл размером от нескольких сантиметров, в котором при возбуждении генерируется и испускается излучение. Но вместо объединения сложных элементов создать лазер — или даже сотни микролазеров — можно, «нарисовав» его микросхему на кусочке оптического кристалла. Раньше ученые делали это с помощью электронной литографии или других дорогих и сложных методов, но в последнее время применяют прямую лазерную запись — достаточно как раз правильно настроить параметры записи и необходимую схему можно «нарисовать» за несколько минут.

«Предложенный нами механизм может быть актуален не только для иттрий-алюминиевого граната, но и для других кристаллов, что поспособствует исследованиям прямой фемтосекундной лазерной записи. Поэтому наши результаты могут сыграть важную роль в развитии подходов для создания микро- и наноструктур в кристаллах, которые востребованы при получении компактных лазерных источников для промышленности и медицины, оптических чипов для квантовых компьютеров, а также записи информации с неограниченным сроком хранения»,— отметил Андрей Охримчук.

22 декабря, 2020
Наночастицы помогли улучшить добычу нефти
Ученые из России выяснили, как наночастицы влияют на эффективность извлечения нефти. Добавление их в...
17 декабря, 2020
Томские ученые создали онлайн-сервис по генерации тестов
Online-сервис по генерации тестов для дискретных систем, созданный радиофизиками ТГУ, за два го...